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The vortices of geostrophic turbulence 

By JAMES C. McWILLIAMS 
Geophysical Turbulence Program, National Center for Atmospheric Research, 

PO Box 3000, Boulder, CO 80307, USA 

(Received 16 May 1989 and in revised form 20 March 1990) 

A solution for decaying geostrophic turbulence at large Reynolds number is analysed 
by means of an automated vortex census. The census identifies the flow structures 
that approximately conform to the idealized shape of an isolated, coherent 
geostrophic vortex. It also determines vortex characteristics, such as amplitude, size, 
and shape. The distributions of these characteristics within the vortex population are 
examined, as are their time evolutions. These distributions are interpreted with 
reference to the dynamical processes of vortices, and they are compared to analogous 
distributions from a solution for two-dimensional turbulence. 

1. Introduction 
Geostrophic turbulence - the turbulence of three-dimensional, rotating, stably 

stratified flow - is believed to be a useful idealization of many planetary-scale flows, 
and it is often thought of as a more complex form of two-dimensional turbulence 
(Charney 1971 ; Rhines 1979). Among the many shared properties of these two types 
of flow is the spontaneous development of long-lived, isolated concentrations of 
vorticity, also called coherent vortices. 

This paper is concerned with the identification and measurement of the coherent 
vortices in a numerical solution for the free decay of geostrophic turbulence a t  high 
Reynolds number (i.e. such that the energy decay is small over many advective time 
units), and is an extension of two other, recent studies by the author. Since the 
overlap is considerable, the present paper is written with the assumption that readers 
have access to the others, in order to avoid unnecessary repetition. 

The first one (McWilliams 1989, hereinafter referred to as DGT) is an investigation 
of the statistical properties of decaying geostrophic turbulence. These properties 
include inverse energy transfer (i.e. transfer to larger horizontal and vertical scales), 
modest energy dissipation together with substantial enstrophy dissipation, ap- 
proximate three-dimensional isotropy of energy and enstrophy spectra, persistence 
of vertical inhomogeneity, and the emergence of coherent vortices which sub- 
sequently dominate the flow evolution. The present vortex analysis is made on the 
principal solution in DGT, which is there referred to as solution A, and table 1 
contains some of its statistical measures that illustrate the behaviour described 
above. This particular solution is typical of the broad class of solutions examined in 
DGT. Also, the reader is referred to DGT for presentations of the geostrophic model 
and the techniques for its numerical solution. 

The second companion study (McWilliams 1990a, hereinafter referred to as V2D) 
identifies and measures the properties of coherent vortices in a numerical solution of 
decaying two-dimensional turbulence. Its methodology is quite close to that used 
here, and, as anticipated above, the vortex properties it demonstrates are essentially 
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t T 
1 .ooo 

0.1 0.976 
0.3 0.910 
1.0 0.782 
3.0 0.708 

10.0 0.683 
30.0 0.675 

V 
1716.0 
1595.0 
1226.0 
515.0 
131.0 
28.7 
10.7 

ruv Ku, 
52.2 3.0 
53.0 3.1 
52.9 3.2 
45.4 3.7 
31.6 6.4 
19.1 27.0 
12.0 69.0 

The quantities in this table are defined below. For further definitions refer to DGT. 

TABLE 1. Solution properties 

similar to many of those found here. Of course, i t  is the horizontal coordinates (x, y )  
for which there is the greatest similarity with two-dimensional turbulence in 
methodology and vortex structure and behaviour, whereas attributes related to the 
vertical coordinate z are unique to geostrophic turbulence. 

The measurement of vortex properties in turbulence is complementary to analyses 
of their dynamical processes: the former exposes the consequences of the latter. 
Many of the dynamical processes of geostrophic vortices are well known, among 
which are those shared with two-dimensional vortices, albeit with modifications due 
to non-trivial vertical structure : barotropic stability limits on vortex shape in 
horizontal planes ; viscous decay of amplitude and diffusive spreading of the spatial 
flow patterns ; vortex emergence and horizontal organization of the flow patterns 
through axisymmetrization of vorticity patches (i.e. regions with a dominant sign in 
the vorticity field) about their extrema ; horizontal deformation and filamentation 
and enhanced viscous dissipation in response to horizontal strain (i.e. S, = 

[(u, - v ~ ) ~  + (uy +w,)']1", where (u, w)  are the horizontal velocity components) ; mutual 
advection (as among point vortices) ; apparently stable aggregations of opposite-sign 
vorticity patches (e.g. dipoles and tripoles) ; and merger of like-sign vortices. These 
processes have a lengthy history of investigation, especially in a two-dimensional 
context (see V2D); a survey of their investigation in a geostrophic context is made 
in McWilliams (1990b). 

In  addition, there are other dynamical processes peculiar to geostrophic vortices. 
These include baroclinic (e.g. Flier1 1988) and internal barotropic (e.g. Gent & 
McWilliams 1986) instability limits on vortex shape ; structural organization through 
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vertical alignment of the axis connecting the horizontal extrema of vorticity 
(Polvani 1990) ; deformation away from vertical alignment, vertical fragmentation, 
and enhanced viscous dissipation in response to vertical strain (i.e. S,  = (u," +v,")i - 
in geostrophic flow the vorticity and strain associated with the vertical velocity w are 
negligible) ; conversion among the components of potential vorticity to cause the 
migration of vorticity extrema towards vertical boundaries ; and attachment of like- 
sign vortices whose three-dimensional extrema are a t  different vertical levels. For the 
most part, these processes have simply been observed to occur (see DGT), and there 
is still much to be learned about geostrophic vortex dynamics. For the purposes of 
this paper, it  must suffice to make qualitative associations between the measured 
vortex properties and their evolution and our heuristic understanding of geostrophic 
vortex dynamics. 

2. Vortex selection procedure 
We seek an analysis procedure for numerical solutions of geostrophic turbulence 

that identifies the coherent vortices present and then measure their properties. The 
identification or selection criteria are based upon an assumed archetypal vortex 
structure : the vertical component of vorticity is of one sign in a three-dimensional 
region about a central extremum ; the axis connecting horizontal extrema a t  different 
vertical levels is aligned vertically ; and the vorticity distribution is axisymmetric 
about a single extremum in each of the horizontal planes perpendicular to the axis. 
The aptness of this structure is illustrated in figures 9 and 10 of DGT. In particular, 
we choose the vorticity {, rather than the advectively conserved potential vorticity 
q, as the field from which to select the coherent vortices. The reasons for this, as 
described in DGT, are that the distribution of 6 in coherent vortices is primarily of 
only one sign whereas q has connected zones of alternating sign, and { is more 
compactly distributed in space than is q. 

The selection procedure is a generalization of the one in V2D. The general rationale 
for the procedure is presented in $ 3  of V2D and will not be repeated here. All aspects 
referring to the horizontal plane containing the central extremum are identical with 
those in V2D. All additions to the procedure refer to the axis. For simplicity, we do 
not analyse the vorticity in horizontal planes other than the one with the central 
extremum. This axis-and-plane scheme is illustrated in figure 1. 

The analysis is made on the spatially gridded vertical vorticity field { (2, y, x )  a t  a 
sequence of times from Solution A of DGT. The horizontal and vertical grid intervals 
are ds = 2x /N,  = 0.0327 and dz = n/N, = 0.0982. The spatial domain is horizontally 
periodic and vertically bounded, with 0 < x ,  y < 2a, 0 < z < K. The time sequence 
consists of all unit times 0 < t < 30 plus t = 0.5 to better resolve the early stages of 
vortex emergence. 

A. Identify extrema Vortices are required to have a three-dimensional extremum in 
vorticity as their centre, with an amplitude above a specified threshold value. 

Procedure Determine the amplitudes c, and positions (xn,  yn,zn), n = 1, ..., N,, for 
all extrema above a threshold value cmin. The extrema are placed in order of 
decreasing amplitude. The extremum test further requires that a candidate 
extremum have the largest magnitude within a local volume with dimensions 
L, x L, x 3dz, unless z, is on a vertical boundary, in which case the height of the test 
volume is 2dz directed only into the interior. 

The selection procedure is the following : 
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FIGURE 1. Axis-and-plane analysis scheme. The large black dot denotes the central vorticity 
extremum, the stippled region denotes the vortex interior in the plane of the central extremum, the 
solid line denotes the axis, and the line with dots denotes a secondary axis branch discarded during 
the elimination of redundancy. See text for further definitions. 

Comments We choose L, = 4ds and cmin = 10, as in V2D. 
B. Identify axes A vortex axis is a connected line of like-sign horizontal extrema in 
5, not excessively tilted away from a vertical alignment. 

Procedure For each n in sequence, a search is made in z outward from the core, first 
up then down. At each step in the search a point is accepted as on the axis if it is a 
local horizontal extremum, if i t  lies within a square of length L, centred a t  the 
horizontal position of the last-accepted axis point next closest to the centre, and if 

(1) 
it satisfies 

If any of these tests is failed, the axis is terminated a t  the last accepted point. It also 
is terminated once a vertical boundary point is accepted. 

Comments The issue of vertical connectedness is somewhat problematic. The 
second criterion above implies that local axis slopes (ratio of horizontal and vertical 
displacements of vertically adjacent horizontal extrema) greater than 0.667 in either 
the (5,  z )  or ( y ,  z )  coordinate plane are excluded. However, frequently there are 
neighbour vorticity patches of the same sign whose connecting slope is greater than 
this. Since there are important dynamical processes of both amalgamation by 
attachment and fragmentation by vertical straining, these patches can either join or 
further separate a t  a later time. If a less stringent upper bound were placed on the 
local slope, the analysis would yield fewer independent vortices with larger heights, 
although the sensitivity to this bound becomes quite small a t  late times. In the 
absence of an excessive slope, A defines the boundary of the vortex in the vertical, 
as it also does in the horizontal (see below) ; we choose A = 0.2 as in V2D. 
C. Eliminate redundancy among axes There are no redundant points among any of 
the axes of selected vortices. 

Procedure During the axis search (B above), if another three-dimensional 

5 
6 
- 2 A .  
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extremum of lesser amplitude (greater n) is encountered, i t  is grafted onto the axis 
of the stronger extremum and deleted as an independent extremum. After calculating 
all axes using this procedure, an additional test is made for whether there are any 
points which are in common between two or more axes; if so, from among the 
associated three-dimensional extrema, only the strongest is retained as the core of an 
independent axis, which is then recomputed from among the associated axes by 
searching outward from the new core and always choosing the longest branch (or, if 
equal length, the branch with the strongest extremum) a t  each intersection point. 

Comments The dynamical processes of axisymmetrization and alignment act 
against the persistence of multiple branches, although they permit multiple cores 
(three-dimensional extrema) on the axis. The choice of whether to select the longer 
or stronger branch is an arbitrary one, but it only rarely needs to be made and thus 
is of little consequence in determining population-averaged vortex properties. 

Once non-redundant axes have been determined, we measure the bulk properties 
of height and slope (tilt from the vertical) from each vortex. Above the central 
extremum, we define h, as the vertical distance from the top grid point of the axis 
to the central extremum plus 0.5dz (which is either halfway to the next grid point or 
the distance to the vertical boundary), and we define s, as the ratio of horizontal and 
vertical displacements between these two points, unless they are the same point, in 
which case s, = 0. Analogous quantities, h, and s,, are defined below the central 
extremum. The vortex height h represents a centre-to-edge distance, where possible 
not limited by intersection with a vertical boundary. Thus, it is equal to the average 
of h, and h,, unless one of the axis ends intersects a boundary, in which case h is the 
non-intersecting half-height, or both ends intersect the boundaries, in which case h 
is the larger half-height. The vortex slope s is defined as the maximum of s, and s,. 
D. Identify interior and boundary regions I n  the horizontal plane of the central 
extremum, a vortex has a simply connected region with vorticity of the same sign as 
its extremum. 

Procedure The vortex interior is the simply connected set of grid points V, 
satisfying ( 1 )  in the plane of the central extremum, and SV, is the set of grid points 
defining its outer boundary. The procedure for finding these sets is presented in V2D. 
E. Eliminate horizontal redundancy All independent vortices are spatially separate in 
their associated horizontal interior regions (i.e. planes). 

Procedure If any three-dimensional extremum lies within the interior set V, of 
another vortex with a stronger extremum, the former is discarded as an independent 
vortex. 

Comments The two redundancy tests, C and E, admit the possibility that two 
vortices with central extrema a t  different levels have an intersection between the 
axis of one and the plane of the other, and perhaps vice versa as well. This is 
interpreted as separate but closely interacting vortices, and it is never a persistant 
state under the action either of axisymmetrization and alignment or of frag- 
mentation. 
F.  Test horizontal shape The vorticity distribution in the horizontal plane of the 
central extremum should not depart excessively from axisymmetry. 

Procedure For each candidate vortex the following shape properties are calculated : 

C = xds,  

A = Cds2, 

8V 

V 
(3) 
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These quantities are, respectively, the circumference, the area, the first spatial 
moment or centroid displacement, and the second-moment matrix. i and j are 
horizontal coordinate indices (i.e. (xl, x 2 )  = (x, y)), and w is a weighting factor equal 
to either 1 or g. Mi, has positive eigenvalues A, 2 A,. 

Using these quantities, the following tests are made: 

Candidate vortices failing any of these tests are rejected. 
Comments The tests (6)-( 11) are identical to  the horizontal shape tests in V2D. We 

also choose quite similar values for the threshold parameters : CmaX = 0.5 x 8n, A,,, = 
[0.2 x 2nI2, and rmin = ds = 0.0327 are all larger than their counterparts in V2D, 
approximately in proportion to the ratio of resolution lengths, ds, and RmaX = 
1.75, S,,, = 0.35, and E,,, = 2.5 are identical. The selection tests are made with both 
values of w, but, unless otherwise stated, the analysed properties quoted below are 
those with w = 1. 

After all this, a set of N,  coherent vortices has been selected, and many of their 
important properties have been determined. 

3. Vortex properties 
The selection procedure yields N,  coherent vortices from among N ,  three- 

dimensional vorticity extrema. The selection ratio N,/N,  is plotted in figure 2 as a 
function both of time and vortex amplitude cv ( =  ][,I). At t = 0, this ratio is quite 
small, although larger than the initial ratio in V2D because of the coarser resolution 
here, hence the lower wavenumber bandwidth of the initial state, and hence its lower 
structural complexity and distortion from the vortex archetype. In  any event, the 
selection ratio subsequently declines to  a value of less than 0.1 (similar to the 
minimum in V2D) within the first few eddy circulation times t ,  (=  l/rmsc = 0.025 a t  
t = 0;  see DGT). This initial decline is due to the mutual straining among the nearly 
contiguous, incipient vortices which deform vorticity patterns away from the 
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FIGURE 2. Selection ratio for vortices, NJN,:  (a) time evolution and ( b )  dependence on vortex 
amplitude 6 ( = 1[,1). In (a) values are plotted for individual times for t < 10 and for time averages 
thereafter ; the averaging intervals are indicated by the horizontal lines and the vertical lines are 
error bars equal to the standard deviation divided by the square root of the number of individual 
values a t  unit times in the average. For ( b )  the values are averages over all vortices in the indicated 
6 intervals and over all unit times from t = 8 to t = 12. 

statistically isotropic initial conditions. Thereafter, the selection ratio steadily 
increases as the vortices emerge and then become spatially sparse, which diminishes 
the straining rates among vortices. At late times, N,/N, x 0.5, which is substantially 
less than the comparable value in V2D. However, in a three-dimensional solution, 
many extrema are not accepted as independent vortices because they are vertically 
connected to stronger extrema; if we multiply the selection ratio by the average 
number of three-dimensional extrema on an axis n, (figure I O U ) ,  we obtain a late- 
time selection ratio similar to V2D. Finally, as in V2D, the selection ratio increases 
with amplitude (figure 2 b) : in a given ambient strain field, stronger vorticity extrema 
are more likely to axisymmetrize and align themselves and thus be accepted as 
coherent vortices. 

The vortex abundance is shown in figure 3. N J t )  steadily decreases by the vortex 
removal processes of strain-enhanced dissipation, merger, and attachment. After an 
initial period of vortex emergence, lasting a few eddy circulation times, the 
abundance has approximately the form of a power-law decay, N, K t-", with a 
perhaps somewhat larger than 1 (see the comparison curves in figure 3). This is also 
true in V2D, except the value of a is significantly smaller there. In  either two- or 
three-dimensional domains, the value a = I corresponds to an entirely random rate 
of close encounters between sparse vortices, with vortex removal presumed to occur 
for some fraction of these close encounters (see V2D, equation (19)). Thus, figure 3 
suggests that close approaches among geostrophic vortices may be more frequent 
than for entirely random, mutually uncorrelated trajectories, in contrast to the two- 
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FIGURE 3. Evolution of the vortex population NJt ) .  Dashed lines are power-law decay curves 
for comparison. 

dimensional case where the encounter rate is clearly less frequent than random. The 
vortex trajectories are dynamically controlled through mutual advection, and as yet 
no theoretical estimates have been made for the rates of encounter due to this 
process, neither for two-dimensional nor for geostrophic motions. It is also true here 
that vortex heights are typically larger than their radii even after normalization by 
N / f ,  where N is the buoyancy frequency and f is the rotational frequency (see figures 
7-9). So vertical separation distances between vortices are smaller than horizontal 
ones; thus, by this measure, vortices are less sparse in z than in (x,y), which may 
contribute to an enhancement of their frequency of close approaches in geostrophic 
turbulence relative to two-dimensional turbulence. Also, in addition to merger, there 
is the process of attachment in geostrophic turbulence that can enhance the rate of 
disappearance of independent vortices. 

The distribution of the vortex population with amplitude is shown in figure 4. It 
is qualitatively quite similar to its counterpart in V2D. The distribution has a broad 
bandwidth a t  all times, although the bandwidth decreases with t both because 
viscous amplitude decay reduces the maximum I& and because the relatively more 
rapid removal of weaker vortices through non-conservative close encounters 
diminishes the population at small 5,. The primary vortex generation mechanism in 
this solution is emergence through axisymmetrization and alignment around the 
vorticity extrema present in the initial conditions, and this accounts for the broad 
maximum in A',([,) a t  intermediate l&. At moderately early times (e.g. t = 3 in figure 
4), there is also a peak in the distribution for small Cv that is not present in the initial 
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1 

C" 
FIGURE 4. Amplitude distribution of the selected vortices Nv(&&) grouped in intervals of A& = 10. 

Vertical line segments indicate that no vortices exist outside the indicated interval. 

conditions. As in V2D, these weaker vortices arise from a secondary generation 
process of vortex emergence from the vorticity filaments and fragments created by 
close interactions between stronger vortices. 

An intrinsically three-dimensional effect is illustrated in figure 5. On approximately 
the same timescale as vortex emergence, an inhomogeneity develops in the vertical 
distribution of vortex central extrema : they are relatively more likely to occur a t  the 
vertical boundary levels and less likely to occur in the adjacent intervals near the 
boundaries. This bears a direct relation to the boundary maxima in vorticity 
variance (DGT, figures 11 and 12). A partial explanation for this distribution is that 
there is an evolutionary tendency for a geostrophic vortex whose central extremum 
is initially near a boundary to shift i t  towards the boundary under the action of a 
time-varying vertical strain field of moderate amplitude. This process probably has 
its cause in the vertical boundary condition for this solution, a$./az = 0, which is 
generally conducive to boundary extrema in $ or 5. ($ is the geostrophic stream 
function, related to  vorticity by 6 = ~x. + $,,.) It is interesting that the average 
vortex amplitude (6) ( z )  (not shown) is not significantly inhomogeneous in z ,  in 
spite of the non-uniform abundance. ( ( * )  denotes an average over the vortex 
population, either in toto or in some partition, as here in the central location z ~ . )  

is shown in figure 6. The only qualitative The evolution of vortex amplitudes 
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FIGURE 5 .  Relative frequency of occurrence of vortex central extrema either on the grid levels 
closest to the vertical boundaries (i.e. p = 0 and N, - 1 in the notation of DGT, equation (1  1)) or 
on the two adjacent interior levels near the boundaries (i.e. p = 1 ,  2, N z - 3 ,  and N , - 2 ) .  The 
quantities plotted are equal to N: x / N ,  A%*, where the asterisk denotes the vortex abundance and 
associated vertical interval for these levels (i.e. 2n/Nz and 4x /Nz ,  respectively). 
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t 

FIGURE 6. The maximum and average vortex amplitudes, max and (5,). 

difference with its counterpart in V2D is the amplitude growth during the first few 
eddy circulation times. This results from the conversion of stretching vorticity 7 
(=  (f2/P) ?,hzz) to relative vorticity 5 a t  the extrema of their sum, the potential 
vorticity q.  The latter is a conserved quantity for inviscid quasi-geostrophic 
dynamics (DGT, equation (1) ) .  Of course, this conversion of potential vorticity 
components is precluded in two-dimensional flow where 5 = q.  Alternatively 
expressed, in geostrophic turbulence there is a rapid initial growth in vortex height 
(figure S a ) ,  which diminishes 7.  This is also reflected in the early-time evolution of 
the centroid wavenumber for the enstrophy spectrum (DGT, figure 3). The 
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FIGURE 7 .  Average vortex radius ( r )  : (a) time evolution and (b )  dependence on amplitude. In (a) 
the average is over all vortices at a particular time. In  ( b )  the average is over all vortices within 
the indicated amplitude interval and the time interval 8 < t < 12, and dots and crosses indicate an 
amplitude interval of A(, = 10 and 20, respectively. Error bars are the standard deviation divided 
by the square root of the number of vortices in the average. 

subsequent decay of max/c,(t) in figure 6 reflects the dominance of viscous effects 
over vortex stretching, at least for the strongest vortices. Viscous diffusion is always 
acting on the vortices, albeit weakly, while vortex stretching is restricted to 
intermittent events of strong vertical straining during close encounters between 
vortices, which become increasingly rare as the vortices become sparser. The average 
amplitude (5,) ( t )  is nearly constant after an initial cycle of growth by stretching and 
viscous decay. This reflects an approximate balance between the viscous decay of 
individual vortices and the selective removal of weaker vortices which tends to raise 
the average amplitude, as is also true in V2D. 

Vortex size grows with time, in both the horizontal (figure 7 a )  and the vertical 
(figure 8a), owing to the amalgamation processes of merger and attachment and to 
the selective destruction by straining of the weaker vortices that are smaller (figures 
7 b  and 86). Horizontal size can also grow by viscous diffusion, but vertical size 
cannot grow in this way since there is no vertical viscosity in this particular solution. 
However, as in V2D, we conclude that diffusive spreading by itself is a secondary 
effect, since the life histories of individual vortices show r and h changing nearly 
discontinuously in time during events of close interaction among vortices. (A life 
history was presented in V2D, $ 5 . )  Of course, viscosity does play an essential role in 
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FIQURE 8. Average vortex half-height ( h ) .  Plotting conventions are as in figure 7. 

the processes of axisymmetrization and alignment, as they act to complete the 
merger and attachment events, but this is a strain-enhanced diffusion and dissipation 
whose characteristic time is t, = t, In Re, where Re is the Reynolds number, which is 
much shorter than the diffusive time t ,  = t,Re (Lesieur 1987, p. 194). For the present 
solution, we can estimate t ,  by l / v ( k ) $ ( t  = 0) = 25, where (k), is the centroid 
horizontal wavenumber for the energy spectrum ; see DGT. Thus, with the definition 
Re = t , / tc,  Re has the value lo3 here, and t ,  = 0.17. 

It is quite rare for the merger and attachment events to cause a decrease in r ,  but 
h can have nearly discontinuous changes of either sign. The associated vertical 
processes are attachment and fragmentation ; under the action of vertical straining, 
the latter process often severs a vortex axis a t  the same level where the former had 
previously joined two vortices. Evidently, however, attachment events are more 
common than fragmentation events, since ( h )  ( t )  increases. ( r )  and ( h )  grow more 
rapidly a t  moderately early times when the vortex density is greater and close 
encounters are more frequent. In  addition, there is a large increase (more than a 
doubling) in ( h )  in the first few eddy circulation times due to vorticity alignment and 
attachment, although I do not know the reason for its rapidity. Finally, figures 7 (b)  
and 8 ( b )  show a positive correlation between vortex amplitude and size. 

As discussed in DGT, many properties of geostrophic turbulence are approximately 
isotropic in the spatial coordinates (5, y, ( N / f )  2). Thus, we examine the vortex aspect 
ratio h/r with a normalization by N/f  (figure 9). Except for the first few eddy 
circulation times, when ( h / r )  rapidly increases because ( h )  does, there is very little 
change in the aspect ratio with time, even with the considerable growth in size 
(figures 7 and 8) and strong dependence on vortex amplitude (figure 9b). This is yet 
another aspect of approximate three-dimensional isotropy of geostrophic turbulence. 
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As with the other properties analysed in DGT, $11, the particular values of the 
normalized aspect ratio do not vary much with N or f. These values, 1 5 Nh/fr 5 3, 
are intermediate between the much smaller values at which baroclinic instability 
typically occurs and the somewhat larger values a t  which internal barotropic 
instability usually occurs (McWilliams 1990 b )  ; the latter process is additionally 
inhibited for the vortices by the weakness of the large-radius reversal in their 
horizontal vorticity gradient (figure 13), which is the instability source (Gent & 
McWilliams 1986). 

The attachment process between initially separate vortices usually preserves their 
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FIQURE 10. Average number of three-dimensional extrema on a vortex axis (n,). Plotting 

conventions are as in figure 7. 
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FIQURE 1 1 .  Average vortex ellipticity ( E ) .  Plotting conventions are as in figure 7. 
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FIGURE 12. Average vortex slope (f/N) (8). Plotting conventions are as in figure 7 .  
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FIGURE 13. Average radial profile for the best-shaped vortices (see text). The dotted line is a 
Gaussian profile, exp[ -a(r’/r)*], with a = 1.609 such that it has the value A = 0.2 at r’ = r .  Error 
bars are the standard deviation a t  each radius divided by the square root of the number of vortices 
in the average over the population of stringently selected vortices during 20 < t < 30. 

central extrema as independent three-dimensional extrema. We define n, as the 
number of independent extrema on a vortex axis. Figure 10 (a)  shows the increase of 
(n,) with time due to the occurrence of attachment events, including the same rapid 
increase in the first few eddy circulation times seen above in ( h )  and ( h / r ) .  (n,) also 
is a strong function of amplitude (figure lob), indicating that the stronger vortices 
undergo more attachment events (and fewer vertical fragmentation events) and thus 
attain greater heights and aspect ratios. 

Mutual straining among vortices, particularly those in close proximity, causes 
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shape deformations away from the posited ideal. These deformations are resisted, or 
subsequently recovered from, through the organizing processes of axisymmetrization 
and alignment. In  figures 1 1  and 12 are two measures of deformation : the horizontal 
ellipticity e in the plane of the central extremum, and the axis slope f s / N  normalized 
in a manner appropriate to the dynamically isotropic coordinates. For both measures 
(as fore in V2D), the behaviour is quite simple : deformations initially increase during 
the first few eddy circulation times as closely packed vorticity centres strain each 
other strongly ; after vortex emergence, however, increasing vortex sparseness leads 
to decreasing strain and deformation. Deformations decrease with vortex amplitude, 
as one expects from simple solutions of vortices in a strain field (e.g. Moore & Saffman 
1971). One noticeable difference with V2D is that the value of (e) is uniformly 
larger in the geostrophic turbulence solution. This might be attributed to the 
additional source of strain, S,, which induces elliptical deformations of the vortex in 
horizontal planes as well as tilting of its axis. 

In  V2D (SS), power-law fits (cc t“) were made to the vortex properties, and the 
resulting exponents were used to test simple model predictions of vortex population 
evolution. Although it  seems to  me premature to  declare models for geostrophic 
population evolution, it may be useful to describe the vortex properties in terms of 
their exponents. Fits during the time interval 5 < t < 30 yield the following: 

aN = - 1.16, a,. = 0.22, ar = 0.37, 

(12) I a - -0.13, a, = -0.24, a, = -0.47, 

ah/r  - - 0.008, a,c-l = 0.26. 
5 -  

r is the circulation of a vortex (see (18) of V2D for its definition). 
As discussed above, the exponent for N, is appreciably more negative in this 

geostrophic turbulence solution than in V2D. On the other hand, the exponents for 
( r ) ,  (r), (c,), and (8) are rather similar to their counterparts in V2D. Furthermore, 
the exponent for ( 8 )  also decreases with time when fits over shorter time intervals 
are made, as expected from simple models of deformation due to horizontal strain, 
S, (see V2D). 

Finally, we examine another aspect of vortex shape, the radial profile [ (r’) ,  where 
r’ is the radial coordinate measured from the vortex centre. There is much variability 
in individual profiles, because the intermittent non-conservative events change the 
profile in ways that are sensitive to  details of the particular interactions. 
Nevertheless, there is a favoured radial profile for vortices whose shape is close to the 
archetype, presumably because they have had a long interval, of order t,, to recover 
from the last close encounter. We educe this profile in the same way as in V2D. First 
we select those vortices which have the least distortion from axisymmetry. We do 
this with a more stringent set of selection parameters: rmin = 0.06, R,,, = 1.25, 
a,,, = 0.1, and E,,, = 0.5. The more stringent selection procedure yields 
N,(t) (< N,(t))  vortices. This number varies little with time after emergence, with a 
value around 10, as the decline in N, (figure 3) approximately balances the decline 
in distortion (figures 11 and 12). For each of the stringently selected vortices, an 
azimuthal average is performed within radial intervals of Ar’ = 0.75ds = 0.0245, and 
then the result is normalized by its extremum 5, and interpolated onto a normalized 
radial coordinate r” = r ’ / r ,  on a uniform grid with a resolution length of Ar“ = 0.1. 
Next we take an average over both the population of stringently selected vortices 
and over a time interval well after emergence (i.e. for all unit times 20 < t < 30). The 
result is shown in figure 13. The average vortex profile is close to a Gaussian shape, 
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except very near the centre and a t  large radii, where the average profile lies below 
the Gaussian one. In these properties it is quite similar to V2D. The discrepancy near 
the centre is somewhat larger here than in V2D, perhaps owing to the poorer 
horizontal resolution (NB (r)/ds is smaller here by about one-third). The discrepancy 
with the Gaussian profile on the edge of the vortex is associated with a zone with 
vorticity of opposite sign, which is not true in V2D, but its amplitude is far less than 
would fully shield the vortex core by making the total circulation (i.e. sr g(r’) r’dr’) 
zero ; for example, the shielded Gaussian profile, <(p) = (1 -p2)e-P2, has a minimum 
value of -0.14, nearly ten times larger than in figure 13. The development of an 
approximately Gaussian profile is interpreted as a consequence of viscous diffusion 
(see V2D). 

We might also examine the vertical profile of vortices. However, there is so 
much variety due to multiple cores and vertical boundary effects that no 
universal shape is found. On the axis vorticity decays away from the three- 
dimensional extrema, and I find no good evidence for connected zones of opposite-sign 
vorticity beyond the ends of the axis. 

4. Discussion 
In  this paper a methodology is presented for the identification of the coherent 

vortices in a numerical solution for decaying geostrophic turbulence. In addition, 
various vortex properties are measured and analyses are made for the property 
distributions within the vortex population and for their time evolution. 

The principal results are the following. The vortices emerge from random initial 
conditions ; initially, the fraction of vorticity extrema selected as coherent vortices 
is small, but it increases steadily with time. The selection ratio is also a monotonic 
function of vortex amplitude. The vortex population decreases with time owing to 
non-conservative vortex interactions during close encounters ; the rate of decrease is 
close to, but somewhat faster than, that of a purely random rate of encounter. 
Vortices with weaker amplitudes are more likely to be destroyed by strain or 
absorbed by merger or attachment. Vortex amplitudes decrease owing to diffusion, 
whose rate is often enhanced by deformation in response to strain. Vortex centres 
have an inhomogeneous distribution in the vertical : vertical boundaries are a 
particularly common location for centres, and the neighbouring levels are a 
particularly uncommon one. Vortex size increases with time, both vertically and 
horizontally ; this occurs primarily through merger and attachment interactions, 
although horizontal diffusion also contributes to horizontal spreading. Nevertheless, 
the normalized aspect ratio N/f  ( h l r )  changes very little with time after the initial 
period of vortex emergence. The stronger vortices tend both to be larger in size and 
to have a larger aspect ratio. The latter suggests that stronger vortices are relatively 
more successful in attachment events, as does the greater number of three- 
dimensional extrema on their axis n,. Deformations of vortices from their preferred 
shape, which is axisymmetric and aligned, decrease with both time and vortex 
amplitude. This is consistent with a vortex’s deformation varying directly with the 
strain field from other vortices, which are increasingly distant with time on average, 
and varying inversely with its own vorticity amplitude. Finally, the average radial 
profile for vortices which are not strongly deformed is close to a Gaussian shape, and 
this is attributed to the slow but persistent influence of diffusion. 

It is remarkable that this behaviour is similar in so many ways to the vortices of 
two-dimensional turbulence (as presented in V2D). In  making this comparison, of 
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course, one must exclude the attributes referring to the added vertical dimension of 
geostrophic turbulence (i.e. Nv(z), ( h ) ,  N/f ( h / r ) ,  n,, and f / N ( s ) ) .  However, the 
distributions of the horizontal properties of the vortices and their evolution do 
indeed seem quite similar (i.e. max [,, (Cv), ( r ) ,  (s), and <5/Cv) (r‘lr). (We cannot 
yet go beyond a declaration of qualitative similarity a t  present, because the solutions 
analysed here and in V2D are not quantitatively equivalent in numerical parameters 
and initial conditions.) Some differences do occur in the vortex population measures. 
The selection ratio N,,”, is smaller in geostrophic turbulence because of multiple 
extrema on the vortex axes, though this difference largely disappears for the 
quantity (n,), N,/N,. The vortex abundance N J t )  does decay somewhat more 
rapidly in geostrophic turbulence, suggesting a possibly qualitative difference in the 
rate of vortex close encounters compared to two-dimensional turbulence, and, as a 
consequence, the average horizontal deformation (8) ( t )  also decays more rapidly. 
Nevertheless, the shape of the amplitude distribution N,(cv) is similar between the 
two types of flow. 

In summary, the coherent vortices of geostrophic turbulence exhibit an orderly 
evolution in their property distributions, and this encourages the hope that a useful 
turbulence theory can be developed based upon vortex dynamics. 
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